Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1301446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029245

RESUMO

Periprosthetic joint infection (PJI) can be diagnosed to characterize the microorganisms constituting a biofilm, which is an essential procedure for proper treatment. The gold standard method for detecting and identifying the causative microorganism is culture of microorganisms from patients-derived sample.; however, this method takes a long time and has low sensitivity. To compensate for these limitations, identification methods based on real-time PCR (RT-PCR) have been widely used. However, RT-PCR also has limitations, including low sensitivity and the requirement of a standard curve for quantification. Therefore, to prevent significant proliferation of pathogenic bacteria, it is important to detect a limited number of infectious bacteria during early stages of PJI. In the present study, we developed droplet digital PCR-based detection of bacterial pathogens in PJI. And we evaluated the analytical performance of the assay using a model plasmid, based on the 16S ribosomal DNA sequence of target bacteria commonly found in PJI. We also prepared genomic DNA extracted from E. coli, S. aureus, and S. epidermidis to test whether ddPCR provides better sensitivity and quantification of the target sequences. ddPCR detected 400 attograms of target DNA, which was more than 10 times less than that detected by real-time PCR using synthesized plasmid. In addition, ddPCR detected target regions from genomic DNA of 50 femtograms for E. coli, 70 femtograms for S. epidermidis, and 90 femtograms for S. aureus. The results indicate that ddPCR has the potential to decrease the microbial detection limit and provide precise detection, signifying its effectiveness for early PJI.


Assuntos
Artrite Infecciosa , Escherichia coli , Humanos , Escherichia coli/genética , Staphylococcus aureus/genética , Plasmídeos/genética , Bactérias/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA Ribossômico
2.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208517

RESUMO

Superoxide dismutase 3 (SOD3), also known as extracellular superoxide dismutase, is an enzyme that scavenges reactive oxygen species (ROS). It has been reported that SOD3 exerts anti-inflammatory abilities in several immune disorders. However, the effect of SOD3 and the underlying mechanism in inflammatory bowel disease (IBD) have not been uncovered. Therefore, in the present study, we investigated whether SOD3 can protect intestinal cells or organoids from inflammation-mediated epithelial damage. Cells or mice were treated with SOD3 protein or SOD3-transduced mesenchymal stem cells (MSCs). Caco-2 cells or intestinal organoids stimulated with pro-inflammatory cytokines were used to evaluate the protective effect of SOD3 on epithelial junctional integrity. Dextran sulfate sodium (DSS)-induced colitis mice received SOD3 or SOD3-transduced MSCs (SOD3-MSCs), and were assessed for severity of disease and junctional protein expression. The activation of the mitogen-activated protein kinase (MAPK) pathway and elevated expression of cytokine-encoding genes decreased in TNF-α-treated Caco-2 cells or DSS-induced colitis mice when treated with SOD3 or SOD3-MSCs. Moreover, the SOD3 supply preserved the expression of tight junction (ZO-1, occludin) or adherence junction (E-cadherin) proteins when inflammation was induced. SOD3 also exerted a protective effect against cytokine- or ROS-mediated damage to intestinal organoids. These results indicate that SOD3 can effectively alleviate enteritis symptoms by maintaining the integrity of epithelial junctions and regulating inflammatory- and oxidative stress.


Assuntos
Colite/etiologia , Colite/metabolismo , Mucosa Intestinal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Superóxido Dismutase/genética , Junções Íntimas/metabolismo , Animais , Biomarcadores , Células CACO-2 , Colite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Junções Íntimas/patologia
3.
J Invest Dermatol ; 141(10): 2344-2353.e7, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33836179

RESUMO

With aging, the skin becomes thin and drastically loses collagen. Extracellular superoxide dismutase (EC-SOD), also known as superoxide dismutase (SOD) 3, is the major SOD in the extracellular matrix of the tissues and is well-known to maintain the reduction‒oxidation homeostasis and matrix components of such tissues. However, the role of EC-SOD in aging-associated reductions of skin thickness and collagen production is not well-studied. In this study, we compared the histological differences in the dorsal skin of EC-SOD‒overexpressing transgenic mice (Sod3+/+) of different age groups with that in wild-type mice and also determined the underlying signaling mechanism. Our data showed that the skin thickness in Sod3+/+ mice significantly increased with aging compared with that in wild-type male mice. Furthermore, Sod3+/+ mice had promoted collagen production through the activation of adenosine monophosphate-activated protein kinase and Nrf2/HO-1 pathways in aged mice. Interestingly, subcutaneous injection of adeno-associated virus‒overexpressing EC-SOD exhibited increased skin thickness and collagen expression. Furthermore, combined recombinant EC-SOD and dihydrotestosterone treatment synergistically elevated collagen production through the activation of TGFß in human dermal fibroblasts. Altogether, these results showed that EC-SOD prevents skin aging by promoting collagen production in vivo and in vitro. Therefore, we propose that EC-SOD may be a potential therapeutic target for antiaging in the skin.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Colágeno/biossíntese , Heme Oxigenase-1/fisiologia , Proteínas de Membrana/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Envelhecimento da Pele , Superóxido Dismutase/fisiologia , Animais , Di-Hidrotestosterona/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672928

RESUMO

Extensive water loss and melanin hyperproduction can cause various skin disorders. Low-temperature argon plasma (LTAP) has shown the possibility of being used for the treatment of various skin diseases, such as atopic dermatitis and skin cancer. However, the role of LTAP in regulating skin moisturizing and melanogenesis has not been investigated. In this study, we aimed to determine the effect of LTAP on yes-associated protein (YAP), a major transcriptional coactivator in the Hippo signaling pathway that is involved in skin moisturizing and melanogenesis-regulating markers. In normal human epidermal keratinocytes (NHEKs), the human epidermal keratinocyte line HaCaT, and human dermal fibroblasts (HDFs), we found that LTAP exhibited increased expression levels of YAP protein. In addition, the expression levels of filaggrin (FLG), which is involved in natural moisturizing factors (NMFs), and hyaluronic acid synthase (HAS), transglutaminase (TGM), and involucrin (IVL), which regulate skin barrier and moisturizing, were also increased after exposure to LTAP. Furthermore, collagen type I alpha 1 and type III alpha 1 (COL1A1, COL3A1) were increased after LTAP exposure, but the expression level of matrix metalloproteinase-3 (MMP-3) was reduced. Moreover, LTAP was found to suppress alpha-melanocyte stimulating hormone (α-MSH)-induced melanogenesis in murine melanoma B16F10 cells and normal human melanocytes (NHEMs). LTAP regulates melanogenesis of the melanocytes through decreased YAP pathway activation in a melanocortin 1 receptor (MC1R)-dependent manner. Taken together, our data show that LTAP regulates skin moisturizing and melanogenesis through modulation of the YAP pathway, and the effect of LTAP on the expression level of YAP varies from cell to cell. Thus, LTAP might be developed as a treatment method to improve the skin barrier, moisture content, and wrinkle formation, and to reduce melanin generation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Argônio/farmacologia , Melaninas/metabolismo , Gases em Plasma/farmacologia , Pele/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Cadeia alfa 1 do Colágeno Tipo I , Proteínas Filagrinas , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Melanócitos/citologia , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Camundongos , Receptor Tipo 1 de Melanocortina/metabolismo , Pele/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Temperatura , Proteínas de Sinalização YAP , alfa-MSH/metabolismo
5.
PLoS One ; 15(1): e0227449, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32004354

RESUMO

The SOD3 variant, SOD3R213G, results from substitution of arginine to glycine at amino acid 213 (R213G) in its heparin binding domain (HBD) and is a common genetic variant, reported to be associated with ischemic heart disease. However, little is understood about the role of SOD3R213G in innate immune function, and how it leads to dysfunction of the cardiovascular system. We observed pathologic changes in SOD3R213G transgenic (Tg) mice, including cystic medial degeneration of the aorta, heart inflammation, and increased circulating and organ infiltrating neutrophils. Interestingly, SOD3R213G altered the profile of SOD3 interacting proteins in neutrophils in response to G-CSF. Unexpectedly, we found that G-CSF mediated tyrosine phosphatase, SH-PTP1 was down-regulated in the neutrophils of SOD3R213G overexpressing mice. These effects were recovered by reconstitution with Wt SOD3 expressing bone marrow cells. Overall, our study reveals that SOD3R213G plays a crucial role in the function of the cardiovascular system by controlling innate immune response and signaling. These results suggest that reconstitution with SOD3 expressing bone marrow cells may be a therapeutic strategy to treat SOD3R213G mediated diseases.


Assuntos
Infiltração de Neutrófilos/fisiologia , Neutrófilos/metabolismo , Superóxido Dismutase/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Cardiopatias/imunologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Miocárdio/metabolismo , Miocárdio/patologia , Neutrófilos/citologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores CCR2/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA